Received 5 January 2009

Accepted 8 January 2009

Acta Crystallographica Section B Structural Science

ISSN 0108-7681

Michael A. Carpenter^{a*} and Christopher J. Howard^{a,b}

^aDepartment of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, England, and ^bSchool of Engineering, University of Newcastle, NSW 2308, Australia

Correspondence e-mail: mc43@esc.cam.ac.uk

Symmetry rules and strain/order-parameter relationships for coupling between octahedral tilting and cooperative Jahn–Teller transitions in *ABX*₃ perovskites. II. Application

The structural evolution of selected perovskites containing Jahn-Teller cations has been investigated in the light of a formal analysis of symmetry hierarchies for phase transitions driven by octahedral tilting and Jahn-Teller cooperative distortions. General expressions derived from the strain/ order-parameter coupling relationships allowed by symmetry are combined with observed changes in lattice parameters to reveal details of order-parameter evolution and coupling. LuVO₃, YbVO₃, YVO₃ and CeVO₃ are representative of systems which develop Jahn-Teller ordering schemes associated with irreducible representations M_2^+ and R_3^+ of the space group $Pm\bar{3}m$. Tilting of their octahedra is associated with M_3^+ and R_4^+ . The Pnma $(M_3^+ + R_4^+ \text{ tilting}) \leftrightarrow P2_1/a$ $(M_3^+ + R_4^+$ tilting, R_3^+ Jahn-Teller order) transition below room temperature is close to second order in character. Shear strains which depend primarily on tilt angles show little variation, implying that there is only weak coupling between the tilting and Jahn-Teller order parameters. The subsequent $P2_1/a \leftrightarrow Pnma \ (M_3^+ + R_4^+ \text{ tilting}, M_2^+ \text{ Jahn-Teller order})$ is first order in character, and involves either a reduction in the R_4^+ tilt angle or a change in the strength of tilt/Jahn–Teller order-parameter coupling. In LaMnO₃, the isosymmetric Pnma $(M_3^+ + R_4^+ \text{ tilting}) \leftrightarrow Pnma (M_3^+ + R_4^+ \text{ tilting}, M_2^+)$ Jahn-Teller order) transition can be described in terms of a classical first-order transition conforming to a 246 Landau expansion with negative fourth-order coefficients. Strain evolution in Ba-doped samples suggests that the transition becomes second order in character and reveals a new strain relaxation mechanism in LaMnO₃ which might be understood in terms of local strain heterogeneities due to the disordering of distorted MnO₆ octahedra. Transitions in PrAlO₃ and La_{0.5}Ba_{0.5}CoO₃ illustrate the transformation behaviour of systems in which the Jahn-Teller ordering scheme is associated with the irreducible representation Γ_3^+ . Overall, coupled tilting + Jahn-Teller phase transitions in perovskites conform to mean-field behaviour, consistent with the underlying role of strain in promoting long interaction lengths.

1. Introduction

Perovskites containing Jahn–Teller cations include some highly topical materials. For example, TbMnO₃ and DyMnO₃ (Kimura *et al.*, 2003; Goto *et al.*, 2004) form part of a group of multiferroic systems which is the subject of intense scrutiny for the combined magnetic and ferroelectric properties which they display. Similarly, $RNiO_3$ (R = La, ...Lu) perovskites undergo a metal–insulator transition and LaMnO₃ provides the end-member for solid-solution series such as (La,Ca)MnO₃, (La,Sr)MnO₃ which show colossal magnetoresistance (*e.g.* Goodenough, 2004). The properties of interest

© 2009 International Union of Crystallography Printed in Singapore – all rights reserved seem to depend on small variations of the basic perovskite structure, but the fact that they arise, characteristically, at discrete structural phase transitions shows that they are due to collective behaviour. As with phase transitions more generally, therefore, the mechanisms of symmetry-breaking processes and the strains which arise from them may play a fundamental role in determining the structure/property relations. In an accompanying paper, Carpenter & Howard (2009) have used group theory and Landau theory to systematize the space groups and possible phase transitions of perovskites which have different combinations of Jahn-Teller distortions and octahedral tilting. The purpose of the present paper is to extend this formal overview to the practical investigation of order-parameter evolution and strain/order-parameter coupling in selected, real systems.

The group-theoretical treatment of Carpenter & Howard (2009) was based on the use of three irreducible representations, Γ_3^+ , M_2^+ and R_3^+ , of the space group *Pm3m* to represent the three most common Jahn-Teller ordering schemes of ABX₃ perovskites and two, M_3^+ and R_4^+ , to represent the different possible tilt systems. Associated with any phase transitions between the possible structure types will be macroscopic spontaneous strain, depending on the precise change in symmetry. General expressions for the relationships between strain and the order-parameter components were also derived using Landau theory. In a number of recent studies (Carpenter, 2007a,b; Carpenter et al., 2001, 2005, 2006; McKnight et al., 2009) it has been found that knowledge of the symmetry properties and strain/order-parameter relationships provides a rigorous formal framework for determining the evolution of perovskites with multiple phase transitions across multicomponent order-parameter space, through the analysis of high-resolution lattice-parameter data. Here, lattice-parameter data from the literature for selected Jahn-Teller perovskites, including LuVO₃, YbVO₃, YVO₃, CeVO₃, (La,Ba)MnO₃ at small Ba-doping levels, PrAlO₃ and La_{0.5}Ba_{0.5}CoO₃, are analysed from the same point of view. In each case there are measurable spontaneous strains ($\gtrsim 0.001$), and the patterns of order-parameter evolution which they reveal are consistent with mean-field behaviour. For LaMnO₃ the strain evolution with temperature suggests an unusual strain/order-parameter coupling mechanism in which the Jahn-Teller order parameter causes a renormalization of the coupling coefficient for strain/tilt coupling.

In the following, extensive use is made of the equations given by Carpenter & Howard (2009). §2 contains an analysis of Jahn–Teller + octahedral tilting transitions in vanadate perovskites and §3 deals with manganites. These have M_2^+ and/ or R_3^+ as the active representation for the Jahn–Teller ordering, corresponding to different ordering schemes of distorted octahedra. In the literature M_2^+ ordering is more usually described as *d*-type (equivalent to *C*-type), in which octahedra in one layer of the structure are overlain by octahedra in the next that have their long axes in the same orientation (see, for example, Okazaki, 1969*a*,*b*; Lufaso & Woodward, 2004; Sage *et al.*, 2007). R_3^+ , more usually referred to as *a*-type (or *G*-type), refers to the ordering scheme in which octahedra in one layer are overlain in the next layer by octahedra which have their long axes rotated through 90°. In §4 the third ordering scheme, associated with Γ_3^+ , is represented by the examples of PrAlO₃ and La_{0.5}Ba_{0.5}CoO₃. In this ordering scheme the unique axis of every Jahn–Teller distorted octahedron is aligned in a single direction. The extent of ordering is defined by order-parameter components $q_{1JT}, q_{2JT}, q_{3JT}$ for M_2^+, q_{4JT}, q_{5JT} for R_3^+ , and q_{tz}, q_{oz} for Γ_3^+ . The extent of octahedral tilting is defined by order-parameter components q_1, q_2, q_3 for M_3^+ , and q_4, q_5, q_6 for R_4^+ (Table 1; Carpenter & Howard, 2009).

2. Jahn–Teller + octahedral tilting transitions in *RVO*₃ perovskites

Published lattice parameters and thermal expansion data for LuVO₃, YbVO₃, YVO₃ and CeVO₃ are analysed here in light of the symmetry and strain relations set out in Carpenter & Howard (2009). These phases are typical of vanadate perovskites in having tilted octahedra and the space group Pnma at room temperature (Miyasaka et al., 2003; Sage et al., 2007; Martínez-Lope et al., 2008). Below room temperature, they undergo a Jahn-Teller orbital-ordering transition, giving the symmetry change $Pnma \rightarrow P2_1/c$. LuVO₃, YbVO₃ and YVO₃ undergo a further transition, $P2_1/c \rightarrow Pnma$, in which the ordering scheme changes from R_3^+ (a-type) to M_2^+ (dtype). There is also an antiferromagnetic transition. Summaries of this overall behaviour are given by Miyasaka et al. (2003) and Sage et al. (2007). Different space groups have been used to describe the monoclinic structure (e.g. Blake et al., 2001, 2002; Bordet et al., 1993; Muñoz et al., 2003a,b, 2004a,b; Ren et al., 2003; Reehuis et al., 2006, Sage et al., 2007). Here the non-conventional setting $P2_1/a$ ($\gamma \neq 90^\circ$) provides the required order-parameter and orientation relationships, with respect to Pnma for calculation of the spontaneous strains (see Table 1 and Fig. 2 of Carpenter & Howard, 2009).

In $P2_1/a$ crystals the R_3^+ order-parameter components are $q_{4JT} = (\sqrt{3}a_{JT})/2$, $q_{5JT} = -(a_{JT}/2)$ and the non-zero tilt components are q_2 , $q_4 = q_6$, q_5 . Substituting these into the strain/order-parameter relationships in §3 of Carpenter & Howard (2009) gives tilting and JT contributions to the shear strains as

$$e_{\rm tx} = \frac{-2(\lambda_3 q_2^2 - \lambda_4 (q_4^2 - q_5^2)) + \lambda_{\rm tR3+} a_{\rm JT}^2}{\frac{1}{2} (C_{11}^\circ - C_{12}^\circ)}$$
(1)

$$e_{\rm ox} = 0 \tag{2}$$

$$e_4 = \frac{-\lambda_5 q_4^2 - \lambda_{\text{eR3}+\text{R4}+} a_{\text{JT}} q_5}{C_{44}^0}$$
(3)

$$e_5 = e_6 = \frac{-\lambda_5 q_5 q_4 + \frac{1}{2} \lambda_{\text{eR3} + \text{R4} +} a_{\text{JT}} q_4}{C_{44}^0}.$$
 (4)

The volume strain, $e_{\rm a}$, becomes

$$e_{\rm a} = -\left[\frac{\lambda_1 q_2^2 + \lambda_2 (2q_4^2 + q_5^2) + \lambda_{\rm aR3+} a_{\rm JT}^2}{\frac{1}{3} \left(C_{11}^{\rm o} + 2C_{12}^{\rm o}\right)}\right].$$
 (5)

From Table 1 of Carpenter & Howard (2009), there are effectively three possible JT + tilt structures with *Pnma* symmetry. The most likely of these is the one with M_2^+ Jahn–Teller ordering and both M_3^+ and R_4^+ tilts, in which the non-zero order-parameter components are q_{2JT} , q_2 and $q_4 = q_6$. The strain/order-parameter relationships are then

$$P_{\text{tx}} = \frac{-2(\lambda_3 q_2^2 - \lambda_4 q_4^2) - 2\lambda_{\text{tM}2+} q_{2\text{JT}}^2}{\frac{1}{2} \left(C_{11}^{\text{o}} - C_{12}^{\text{o}} \right)}$$
(6)

$$e_{\rm ox} = 0 \tag{7}$$

$$e_4 = \frac{-\lambda_5 q_4^2 - \lambda_{\rm eM2+M3+} q_{\rm 2JT} q_2}{C_{44}^{\rm o}}$$
(8)

$$e_5 = e_6 = 0$$
 (9)

$$e_{a} = -\left[\frac{\lambda_{1}q_{2}^{2} + 2\lambda_{2}q_{4}^{2} + \lambda_{aM2+}q_{2JT}^{2}}{\frac{1}{3}\left(C_{11}^{o} + 2C_{12}^{o}\right)}\right].$$
 (10)

Values of individual components are derived from the lattice parameters for *Pnma* crystals according to (from Carpenter *et al.*, 2001)

$$e_1 = \frac{\frac{b}{2} - a_o}{a_o}$$
(11)

$$e_2 + e_3 = \frac{\frac{a_0}{\sqrt{2}} - a_0}{a_0} + \frac{\frac{c_0}{\sqrt{2}} - a_0}{a_0}$$
(12)

$$e_4 = \frac{\frac{a}{\sqrt{2}} - a_0}{a_0} - \frac{\frac{c}{\sqrt{2}} - a_0}{a_0},$$
 (13)

where a_0 is the reference cubic parameter extrapolated from high temperatures. If lattice parameters for the $P2_1/a$ setting of the monoclinic structure are used to calculate the strains, these expressions remain the same except that the *a* lattice parameter in (11)–(13) is replaced by $a\sin\gamma$ ($\simeq a$ for $\gamma \simeq 90^{\circ}$) and the additional shear strains are

$$e_5 = e_6 = \frac{1}{\sqrt{2}} \frac{a}{a_0} \cos \gamma \simeq \frac{1}{\sqrt{2}} \cos \gamma.$$
(14)

Fig. 1 shows lattice-parameter data for LuVO₃, YbVO₃, YVO₃ and CeVO₃ reproduced from Muñoz *et al.* (2003*a*, 2004*a*), Marquina *et al.* (2005) and Ren *et al.* (2003), respectively. The data of Marquina *et al.* (2005) for YVO₃ were from linear thermal expansion measurements, given with respect to room temperature. Points taken at 5 K intervals from their Fig. 1 have been converted to lattice-parameter values using the room-temperature data of Martínez-Lope *et al.* (2008). Although all four of these vanadate phases passed through the stability field of the monoclinic structure, values of the monoclinic angle were determined only by Ren *et al.* (2003) for CeVO₃. This angle is close to 90°, and no serious error is introduced into the strain calculation by assuming $\gamma = 90^\circ$ for

Figure 1

Variations with temperature of lattice parameters for LuVO₃ (taken from Muñoz *et al.*, 2004*a*), YbVO₃ (Muñoz *et al.*, 2003*a*), YVO₃ (Marquina *et al.*, 2005) and CeVO₃ (Ren *et al.*, 2003). Linear thermal expansion data of Marquina *et al.* (2005) for YVO₃ were converted to lattice-parameter values by calibration with the room-temperature data of Martínez-Lope *et al.* (2008). All are given for the *Pnma* and *P*2₁/*a* unit-cell settings. The monoclinic angle, γ , was determined only by Ren *et al.* (2003). The curve shown through the unit-cell volume data for YVO₃ is a fit of the function $V_o = y_0 + y_1 \Theta_{so} \operatorname{coth}(\Theta_{so}/T)$ ($y_0 = 222.44 \text{ Å}^3$, $y_1 = 0.00503 \text{ Å}^3 \text{ K}^{-1}$, $\Theta_{so} = 128.02 \text{ K}$) to data in the temperature interval 200–300 K (*Pnma*, no JT). It extrapolates through data in the stability field of the *P*2₁/*a* structure.

Figure 2

Symmetry-adapted strains calculated from the lattice-parameter data given in Fig. 1. (a)–(c) Straight lines have been fit to data for the Pnma phase above the $Pnma \rightarrow P2_1/a$ transition in order to highlight the changes in strain associated with this transition. The magnitude of e_4 is primarily a measure of the R_4^+ tilt angle; it shows no deflection at the $Pnma \rightarrow P2_1/a$ transition of LuVO₃ and the largest deflection in CeVO₃. The subsequent $P2_1/a \rightarrow Pnma$ transition is first order in character, as shown most clearly at \sim 77 K in the data for YVO₃ derived from linear thermal expansion measurements. The value of e_{tx} is a more sensitive measure of the JT order parameter and the $Pnma \rightarrow P2_1/a$ transition is marked by a change in trend which is slightly non-linear in each of the four vanadates. The Néel temperatures, T_N, of LuVO₃, YbVO₃, YVO₃ and CeVO₃ are ~ 107 K (Muñoz et al., 2004a), ~ 104 K (Muñoz et al., 2003a), ~116 K (Marquina et al., 2005) and ~134 K (Ren et al., 2003), respectively. Only in the case of CeVO3 is there an obvious change in the trend of symmetry-breaking strains at $T_{\rm N}$ (d) e_5^2 is expected to vary as the square of the JT order parameter. Between T_c and T_N it varies almost linearly with temperature, implying close to classical second-order character for the transition. The curve shown through the data is a guide to the eye which emphasizes a slight curvature that could be attributed to the influence of a sixth-order term in the Landau potential.

 $e_2 + e_3$ and e_4 . Since the data do not extend into the stability field of the cubic phase, it is not possible to determine a_0 by extrapolation. Rather, a_0 has been approximated as $a_0 = (a_c b_c c_c)^{1/3}$, where $a_c = a_{Pnma}/\sqrt{2}$, $b_c = b_{Pnma}/2$ and $c_c = c_{Pnma}/\sqrt{2}$. This approximation also does not introduce serious error into calculated values of the shear strains. Variations of e_{tx} , e_4 and e_5 for LuVO₃, YbVO₃, YVO₃ and CeVO₃ are given in Fig. 2.

2.1. Octahedral tilting

Shear strain e_4 provides information relating primarily to q_4 which, in turn, relates to the R_4^+ tilt angle. Combined tilt angles at room temperature are in the range 19–12° (Martínez-Lope *et al.*, 2008). In LuVO₃ there is no deflection in the variation of e_4 with temperature at the *Pnma* $\rightarrow P2_1/a$ transition point (~175 K according to Miyasaka *et al.*, 2003; ~185 K based on the deflection shown by e_{tx} in Fig. 2), suggesting that the already large tilt angles are only weakly influenced, if at all, by the Jahn–Teller ordering. Small changes in e_4 are observed for the other phases, but these are less than ~0.003, even in CeVO₃. Additional tilting corresponding to q_5 (allowed under $P2_1/a$ but not under *Pnma* symmetry) is therefore presumably also small. A further, distinct anomaly is visible in all the strains at the Néel temperature of CeVO₃ (~ 134 K; Ren *et al.*, 2003).

The $P2_1/a \rightarrow Pnma$ transition at lower temperatures is necessarily first order in character and occurs with a marked decrease in e_4 . This can be understood in terms of a reduction in the R_4^+ tilt angle and/or the change in JT/tilt coupling [cf. (3) and (8)]. Apparently continuous variations through the transition temperature shown by LuVO₃ and YbVO₃ are presumably due to a two-phase coexistence or to some line broadening in the original powder diffraction patterns.

More direct evidence that any changes in octahedral tilt angles associated with the ordering processes are small is provided by the variation of V-O-V bond angles with temperature in YVO₃ (Blake *et al.*, 2001, 2002). This angle provides a measure of the total tilt angle of the octahedra (Martínez-Lope *et al.*, 2008). For YVO₃ there is no change in trend of the bond angle at the *Pnma* $\rightarrow P2_1/a$ transition and there is a reduction of less than 0.2% at the $P2_1/a \rightarrow Pnma$ transition (Fig. 8b of Blake *et al.*, 2002).

2.2. Jahn-Teller order parameters

Variations of e_{tx} might provide the most information about the JT order parameters, depending on the extent to which the contributions from $M_3^+(q_2)$ and $R_4^+(q_4)$ tilts cancel each other out [cf. (1) and (6)]. If it is assumed that the tilt angles vary very little, the change in e_{tx} due to the Pnma $\rightarrow P2_1/a$ transition, Δe_{tx} , relates essentially to the variation of a_{JT}^2 [see equation (1)]. It is clear from Fig. 2(a) that Δe_{tx} obtained with respect to a linear extrapolation of e_{tx} data from high temperatures would go continuously to zero at the Pnma (tilt only) $\rightarrow P2_1/a$ transition, although not necessarily quite with a linear temperature dependence. The implication is that the JT transition is itself close to being second order in character. This is confirmed by plots of e_5^2 against temperature (Fig. 2*d*) and e_5^2 against Δe_{tx} (Fig. 3) for CeVO₃, since $e_5 \propto a_{JT}$ for constant q_4 and small q_5 [equation (4)]. It is also notable that in the *Pnma* (+JT) structure, e_{tx} values lie close to values extrapolated from the *Pnma* (no JT) structure at higher temperatures, implying that the coupling coefficient λ_{tM2+} in (6) is small.

Sage *et al.* (2007) found that RVO_3 perovskites with R = Tb, Gd, Eu, Sm and Nd can consist of two-phase intergrowths in which one phase has M_2^+ JT order and the second has R_3^+ order. For larger R^{3+} cations there is a first-order transition between the two ordering schemes (Blake et al., 2001, 2002; Miyasaka et al., 2003; Ren et al., 2003; Sage et al., 2007) which, in terms of two JT order parameters, would correspond to the pattern represented by Fig. 6(e) or (f) of Carpenter & Howard (2009). At temperatures corresponding to the two-phase regions, the relative energies of the JT ordering schemes are finely balanced, providing the most likely scenario for the development of alternative, mixed ordering schemes such as are shown in Table 3 and Fig. 7 of Carpenter & Howard (2009). In this context, it is interesting to note that Sage et al. (2007) reported anomalies in the evolution of the lattice parameters of JT structures in the two-phase region.

2.3. Systematics for RVO₃ structures

Fig. 4 shows variations of e_{tx} and e_4 as a function of the ionic radius of the *R* cation in *RVO*₃ perovskites at room temperature, using the lattice-parameter data of Martínez-Lope *et al.* (2008). The tetragonal shear strain remains small in comparison with e_4 at all compositions, as expected for *Pnma* structures, although both are larger in magnitude than observed in CaTiO₃ (Carpenter *et al.*, 2001) or SrZrO₃ (McKnight *et al.*, 2009). A striking feature is the pseudocubic geometry which develops with increasing radius towards the La³⁺ end-member. In particular, LaVO₃ has close to cubic lattice parameters, in spite of having a total tilt angle of ~ 12° (Martínez-Lope *et al.*, 2008) and transition temperatures of

Figure 3

Variation of e_5^2 with Δe_{tx} for CeVO₃, where Δe_{tx} is the change in tetragonal strain due to the *Pnma* $\rightarrow P2_1/a$ transition (see Fig. 2). The linear correlation at temperatures above T_N (straight line fit to the data) is consistent with $e_5^2 \propto \Delta e_{tx} \propto a_{JT}^2$.

1113 and 1298 K, respectively, for the $R\bar{3}c \leftrightarrow Pnma$ and $Pm\bar{3}m \leftrightarrow R\bar{3}c$ tilting transitions (Zubkov *et al.*, 1980, in Martínez-Lope *et al.*, 2008). As pointed out by Martínez-Lope *et al.* this implies that the strain is not only due to tilting of VO₆ octahedra. An additional contribution proposed below for LaMnO₃ is from local strain heterogeneities associated with the Jahn–Teller distortion of individual octahedra which act to suppress coupling of the order parameter for octahedral tilting with the macroscopic strain.

2.4. Order-parameter coupling

Coupling between octahedral tilting and Jahn–Teller order parameters in the $P2_1/a$ structure is described by (from §3 of Carpenter & Howard, 2009)

$$\lambda_{qR3+M3+}a_{JT}^2q_2^2 + 2\lambda_{qR3+R4+}a_{JT}^2q_4^2 + \frac{3}{2}\lambda'_{qR3+R4+}a_{JT}^2q_4^2.$$
(15)

All the terms are biquadratic, *i.e.* of the form $\lambda q_{JT}^2 q_{tilt}^2$. The most overt evidence of this coupling could appear in the renormalization of the critical temperature, T_c , effectively as

$$T_{\rm c,JT}^* = T_{\rm c,JT} - \frac{\lambda q_{\rm tilt}^2}{a}.$$
 (16)

A second-order transition at $T_{c,JT}$ in a crystal with no tilting would become $T_{c,JT}^*$ in a crystal with some fixed degree of tilting. Comparison of the data for *Pnma* (no JT) $\rightarrow P2_1/a$ transition temperatures of Miyasaka *et al.* (2003) with data of Martínez-Lope *et al.* (2008) for tilt angles at room temperature shows that a simple trend of increasing or decreasing $T_{c,JT}^*$ with increasing tilt angle is however not observed. Without data for the separate tilt angles relating to q_2 and q_4 , it is not possible to further test this prediction of the full influence of coupling. On

Variation of symmetry-adapted strains as a function of the ionic radius of the *R* cation at room temperature for RVO_3 and $RMnO_3$ perovskites, as calculated from the lattice-parameter data of Alonso *et al.* (2000), Tachibana *et al.* (2007) and Martínez-Lope *et al.* (2008). Ionic radii are those from Table 1 of Martínez-Lope *et al.* (2008; after Shannon, 1976). In vanadates, the strains are due to octahedral tilting transitions from a parent cubic ($Pm\bar{3}m$) structure to the *Pnma* structure. In manganites the strain is due to both octahedral tilting and to the cooperative Jahn–Teller transition. For both systems the magnitude of the strains reduces with increasing ionic radius of the *A*-site cation.

the other hand, if the critical temperatures for Jahn–Teller ordering and octahedral tilting are widely separated, it should be expected that the influence of one order parameter on the other would be small, such that the tilt angle across a Jahn– Teller transition would not show much of a deflection. This is indeed consistent with the behaviour observed.

On the basis of a microscopic model, Mizokawa *et al.* (1999) argued that M_2^+ ordering is stabilized relative to R_3^+ ordering due to the influence of octahedral tilting. In the present context, this would be equivalent to asserting that the coupling terms favour the *Pnma* Jahn–Teller structure ahead of the $P2_1/a$ structure. However, as seen from the discussion of octahedral tilting in §2.1, the strain which should be most sensitive to the R_4^+ tilt actually decreases at the $P2_1/a \rightarrow Pnma$ transition. In detail the direct order-parameter coupling terms permitted by symmetry show that the coupling of Jahn–Teller order parameters with the different tilt order parameters is quite subtle. For the *Pnma* Jahn–Teller structure, the direct coupling terms would be

$$\begin{aligned} & (\lambda_{qM2+M3+} + \lambda'_{qM2+M3+})q_{2JT}^2q_2^2 + 2\lambda_{qM2+R4+}q_{2JT}^2q_4^2 \\ & + \lambda_{qM2+M3+R4+}q_{2JT}q_2q_4^2. \end{aligned}$$
 (17)

The key point is that a complete analysis of how the tilting influences stability would require separation of q_2 and q_4 tilts rather than the use of a single effective tilt angle which includes both components.

The magnitudes of both e_4 and e_{tx} are lower in the *Pnma* structure than they are in the $P2_1/a$ structure, indicating that there are subtle changes in the values of the coupling coefficients and/or the evolution of the order parameters for the two structure types. There is also a difference in the volume strain, revealed by the data of Marquina *et al.* (2005) for YVO_3 . The variation of unit-cell volume with temperature derived from the linear thermal expansion data is given in Fig. 1. A standard baseline function, $V_{\rm o} = y_0 + y_1 \Theta_{\rm so} \coth(\Theta_{\rm so}/T)$ (Meyer *et al.*, 2000, 2001; Sondergeld et al., 2000; Carpenter et al., 2003; after Salje et al., 1991) has been fit to data in the interval 200-300 K. This gives a saturation temperature of $\Theta_{so} = 128 \pm 48$ K, which is not atypical for perovskites (e.g. Hayward et al., 2002), and a curve which extrapolates through data for the $P2_1/a$ structure. Any change in volume strain associated with the Pnma (no JT) $\rightarrow P2_1/a$ transition is essentially zero, consistent with the finding of Bizen et al. (2007) that the transition temperature is independent of pressure. There is then a change of volume strain of ~ -0.0015 at the $P2_1/a \rightarrow Pnma$ (JT) transition, consistent with the increase in transition temperature with increasing pressure shown by Bizen et al. (2007). Sage et al. (2007) described essentially the same volume evolution for GdVO₃, and Zhou et al. (2007) have reported a similar effect of pressure on the $P2_1/a \rightarrow Pnma$ transition in LuVO₃. Thus, the Pnma Jahn-Teller structure has a smaller total shear strain and a slightly different volume relaxation than the $P2_1/a$ structure. These differences are uncalibrated in terms of the energy changes which they might represent, however.

The Néel temperature is discernable in the strain variations of CeVO₃, but not in strains for the other systems analysed here. If there is coupling between the magnetic order parameter and the Jahn–Teller/tilt order parameters *via* a common strain, it is presumably greatest for the large *R* cations, where there is also the smallest difference between the Néel temperature and Jahn–Teller transition temperature.

In summary, Jahn–Teller and octahedral tilting transitions in RVO_3 structures are both accompanied by significant strain/ order-parameter coupling which allows the evolution of the separate order-parameter components to be investigated. There are subtle differences in the strain behaviour of the two types of Jahn–Teller structures, but the significance of these in relation to their possible contribution to relative stability has not been calibrated. Other structure types have been reported, including a possible triclinic structure in YVO₃ at low temperatures (Ulrich *et al.*, 2003; Tsvetkov *et al.*, 2004), implying that there could be more complex pathways through the possible transition hierarchies shown in Figs. 3 and 4 of Carpenter & Howard (2009).

2.5. Thermodynamic character of the transitions

The *Pnma* (no JT) $\rightarrow P2_1/a$ transition is known to be continuous and, in that sense, second order in character (Blake et al., 2001, 2002; Ren et al., 2003; Tsvetkov et al., 2004). The curvature shown by the strain data show, further, that for at least some vanadates there are contributions to the free energy from a sixth-order term in the order parameter (246 Landau potential). The form of the excess heat-capacity curve associated with the *Pnma* (no JT) $\rightarrow P2_1/a$ transition in YVO₃ (Fig. 5 of Blake et al., 2002) is consistent with this in showing a tendency towards having a λ shape. In their analysis of the heat-capacity results, Blake et al. (2002) also pointed out that the entropy change is much lower than the configurational entropy expected for pure order/disorder behaviour. The $Pnma \rightarrow P2_1/a$ transition appears to display characteristics which are closer to the displacive limit than to the order/ disorder limit.

3. Jahn-Teller + octahedral tilting transitions in (La,Ba)MnO₃ perovskites

3.1. Strain analysis of LaMnO₃

The *Pnma* (JT + tilt) structure of LaMnO₃ develops by $M_3^+ + R_4^+$ tilting before undergoing Jahn–Teller ordering according to M_2^+ : $R\bar{3}c \leftrightarrow Pnma$ (tilted) $\leftrightarrow Pnma$ (tilted + JT). The two phase transitions occur at ~ 1010 and 750 K (Norby *et al.*, 1995; Rodríguez-Carvajal *et al.*, 1998; Mandal *et al.*, 2001; Mandal & Ghosh, 2003; Sánchez *et al.*, 2003; Chatterji *et al.*, 2003, 2004, 2006; Qiu *et al.*, 2005).

A formal strain analysis is again revealing of order-parameter evolution through the phase transitions. Individual lattice parameters for LaMnO₃ have been reproduced in Fig. 5(a) from Fig. 3 of Chatterji *et al.* (2003), and used to determine values for the shear strains e_4 and e_{tx} . The same approximation as applied in the case of vanadates was used to estimate $a_{\rm o}$. Unit-cell volume data, for the small pseudocubic cell, are reproduced in Fig. 5(b). These have been used to determine values for the volume strain, $V_{\rm s}$, associated with the Jahn–Teller transition according to the usual definition

$$V_{\rm s} = \frac{V - V_{\rm o}}{V_{\rm o}}.$$
 (18)

In this case, values for the reference parameter, $V_{\rm o}$, were obtained by fitting a straight line to data for the unit-cell volume above 750 K and extrapolating to lower temperatures. The resulting strains are shown in Fig. 5(c) and display the characteristic pattern of a classical coelastic, first-order structural phase transition at ~ 750 K.

Structural data of Rodríguez-Carvajal *et al.* (1998) and Chatterji *et al.* (2003) are consistent with the view that the *Pnma* phase of LaMnO₃ has $q_2 \neq 0$, $q_4 = q_6 \neq 0$ and $q_{2JT} = 0$ at

Figure 5

Lattice-parameter data for LaMnO₃, reproduced from Chatterji *et al.* (2003), and symmetry-adapted strains derived from them. Unit-cell volume is given for the small pseudocubic cell. Volume strain, V_s , was determined with respect to the reference volume, V_o , given by the straight-line fit to the data at T > 750 K. The symmetry-adapted strains in (c) follow the classical pattern of a first-order phase transition driven by a single order parameter. The solid curve is a fit to e_4 using the solution for a Landau 246 potential with a negative fourth-order coefficient and the transition temperature set at 750 K ($T_c = 646$ K, step at 750 K = 0.02064). There is very little change in octahedral tilt angles through the transition according to data reproduced from Rodríguez-Carvajal *et al.* (1998, filled circles, right axis).

 $T > \sim 750$ K. The strains are close to zero in spite of the total octahedral tilt angle about [111] being more than 10° (Rodríguez-Carvajal et al., 1998), which implies that the coupling coefficients $\lambda_1 - \lambda_5$ in (6)–(10) are small. Below \sim 750 K $q_{2JT} \neq 0$ but the tilt angle increases only slightly (Fig. 5c), consistent with q_2 and q_4 remaining almost constant. Large strains (up to $\sim 4\%$) immediately develop and, if q_2, q_4 hardly vary and $\lambda_1 - \lambda_5$ are small, this requires that the coupling coefficients λ_{tM2+} , $\lambda_{eM2+M3+}$ and λ_{aM2+} are large. An internal inconsistency is immediately apparent, however, in that e_{tx} and e_4 should then show quite different variations with temperature since the former depends on q_{2JT}^2 [see (6)] and the latter on q_{2IT} [see (8)]. In reality, all three of the strains arising at the \sim 750 K transition vary almost linearly with each other (Fig. 6), which can only occur if they are each due almost exclusively to coupling with the square of the octahedral tilt components. This requires that λ_{tM2+} , $\lambda_{eM2+M3+}$ and λ_{aM2+} are small. A straightforward solution of the apparent inconsistency is that $\lambda_1 - \lambda_5$ are themselves dependent on q_{2JT} . The lowest order dependence allowed by symmetry has $\lambda_i = \lambda'_i q_{\rm IT}^2$, giving strain/tilt coupling relationships of the form $e \propto$ $\lambda'_i q_{JT}^2 q_{tilt}^2$. In this case the strains would be zero in the *Pnma* phase at $T > \sim 750$ K and would all scale with q_{2JT}^2 if the tilt angles do not vary much through the transition point. The fit to e_{A} in Fig. 5(c) is a first-order solution to a standard Landau 246 potential with negative fourth-order coefficient, showing, further, that the evolution of q_{2JT}^2 can be described in terms of a simple mean-field pattern.

Figure 6

Strain-strain relationships for LaMnO₃. Each of the symmetry-adapted strains arising at the *Pnma* (tilted) \leftrightarrow *Pnma* (tilted + JT) transition varies almost linearly with each of the other strains.

Additional evidence that the Jahn-Teller transition in LaMnO₃ is manifest through the dependence of the strain/tilt coupling coefficients on q_{2T}^2 is provided by the variations of shear strains with pressure. Owing to the positive volume strain associated with the Jahn-Teller ordering transition, the effect of increasing pressure is expected to be stabilization of structures with octahedral tilting only, as confirmed by Loa et al. (2001). Lattice-parameter data from Fig. 2 of Loa et al. (2001) have been used here to calculate macroscopic shear strains [with the usual approximation $a_0 = (a_c b_c c_c)^{1/3}$], and these are shown in Fig. 7. A clear break in slope occurs in e_4 at \sim 16 GPa, which corresponds closely to the pressure at which, according to Loa et al. (2001), the MnO₆ octahedra, on average, finally lose their individual JT distortions. At P >16 GPa, e_4 is expected to scale with q_4^2 [see (8)] and the linear decrease with increasing pressure is consistent with a reduction in the tilt angle towards a second-order transition at some much higher pressure to a structure without tilting. If the tilt angles do not vary greatly at the Jahn-Teller transition pressure of ~ 16 GPa and $\lambda_{eM2+M3+}$ is small, as when temperature is the applied variable, the change in e_4 shown as Δe_4 in Fig. 7 is due to the Jahn-Teller transition alone. A linear dependence of Δe_4 can be described using $\lambda_5 = \lambda'_5 q_{\rm JT}^2 + \lambda''_5$ (where λ''_5 is constant) and $q_{\rm IT}^2 \propto (P_c - P)$. In other words, the Jahn–Teller transition displays classical (mean-field) second-order character with $P_{\rm c} \simeq 16$ GPa. The evolution of $e_{\rm tx}$ is inevitably more complex because of the dependence on both q_2 and q_4 [see (6)].

It is known from a recent study of the octahedral tilting transition in $La_{0.6}Sr_{0.1}TiO_3$, which has 30% of the *A* sites vacant, that cation disordering between crystallographic sites suppresses coupling of the tilt order parameter with macroscopic strain, but barely influences the octahedral tilt angles or the transition temperature (Howard *et al.*, 2007). The mechanism for this almost certainly involves the development of local distortions or strain heterogeneities when differently

Figure 7

Symmetry-adapted strain variations with pressure for LaMnO₃, as determined from lattice-parameter data given in Fig. 2 of Loa *et al.* (2001) and the approximation $a_o = (a_c b_c c_c)^{1/3}$. Straight lines have been fit to data at $P \ge 16$ GPa and $P \le 16$ GPa. The difference between these, Δe_4 , is interpreted in terms of a second-order transition $[\Delta e_4 \propto q_{\rm IT}^2 \propto (P_c - P), P_c \simeq 16$ GPa] driven by cooperative Jahn–Teller distortions.

sized cations occupy adjacent crystallographic sites in a disordered manner, and a similar mechanism can be envisaged for LaMnO₃. Sánchez et al. (2003), Qiu et al. (2005) and Bozin et al. (2006) seem to have shown definitively that individual MnO₆ octahedra in LaMnO₃ retain a degree of Jahn-Teller distortion up to high temperatures. The Pnma (tilted) \leftrightarrow *Pnma* (tilted + JT) transition at \sim 750 K is effectively then due to a change from ordered to disordered arrangements of the octahedra, with any ordering of the orientations above 750 K occurring only within clusters up to ~ 16 Å in diameter (Sánchez et al. 2003; Qiu et al. 2005). Sánchez et al. (2003) also highlighted the importance of strain in mediating the ordering process. Disordering of distorted octahedra must be accompanied by the development of local strains in the same manner as has been argued for the disordering of cations and vacancies in La_{0.6}Sr_{0.1}TiO₃. Structural heterogeneity in the form of local strain gradients hinders the development of long-range correlations of microscopic strains which would normally make up the macroscopic strain that accompanies octahedral tilting. The outcome at a macroscopic scale is that the strain/ tilt coupling parameters have a strong dependence on the second order parameter. Indirect evidence of such local strain behaviour on a unit-cell scale in silicate and oxide solid solutions is provided by line broadening in powder IR absorption spectra (Boffa Ballaran et al., 1998; Atkinson et al., 1999; Carpenter et al., 1999; Salje et al., 2000; Meyer et al., 2002; Carpenter & Boffa Ballaran, 2001; Carpenter, 2002; Tarantino et al., 2002).

3.2. Chemical doping

A different perspective on the importance of local heterogeneous strains in manganite perovskites is provided by the evolution of macroscopic strains in the $La_{1-x}Ba_xMnO_3$ solid solution. Lattice-parameter data of Chatterji et al. (2004) for x = 0.025-0.1 have been used to determine symmetry-adapted strains through the $Pnma \leftrightarrow Pnma$ transition at several different compositions, and these are presented in Fig. 8. Volume strains calculated in the same way as for LaMnO₃ show a decrease in the marked discontinuity at the transition point and a trend towards linear behaviour when Ba is added (Fig. 8*a*). The pattern of evolution of both e_{tx} and e_4 is qualitatively the same, although there is a small deviation from cubic lattice geometry in the doped samples above their respective transition temperatures. As in pure LaMnO₃, the shear strains, e_{tx} and e_4 , are linearly related (Fig. 8c), and the same arguments apply in relation to their origin. The evolution of V_{s} , e_{tx} and e_{4} is therefore expected to reveal the evolution with temperature and composition of q_{2JT}^2 . On this basis V_s for the *Pnma* (tilted) \leftrightarrow *Pnma* (tilted + JT) transition shows the temperature dependence of a classical first-order transition (Landau 246 potential, negative fourth-order coefficient) at x = 0, 0.025, close to tricritical character [Landau 26 potential, $q^4 \propto (T_{\rm c} - T)$] at x = 0.05, 246 character with positive fourthorder coefficients at x = 0.075 and second-order character [Landau 24 potential, $q^2 \propto (T_c - T)$] at x = 0.1 (Fig. 8a). The magnitudes of the strains all diminish with increasing Ba content, consistent with suppression of the strain/tilt coupling by local strain heterogeneities owing to substitution of Ba²⁺ for La³⁺ and replacement of some Mn³⁺O₆ octahedra by Mn⁴⁺O₆ octahedra. A reduction in the strength of coupling will be at least a contributory factor in the change from firstorder character to second-order character for the transition through renormalization of the fourth-order Landau coefficient in the usual manner (see also, Maitra *et al.*, 2004).

Figure 8

Symmetry-adapted strains calculated from the lattice-parameter data of Chatterji *et al.* (2004) for $\text{La}_{1-x}\text{Ba}_x\text{MnO}_3$ with x = 0.025, 0.05, 0.075 and 0.1. Strains for x = 0 are those given in Fig. 5(*c*). (*a*) The volume strains have been fit with standard solutions to a Landau expansion assuming that V_s scales with the square of a single order parameter. On this basis the transition is first order in character at x = 0, 0.025, tricritical at x = 0.05 and second order at x = 0.1. (*b*) The *Pnma* (tilted) \leftrightarrow *Pnma* (tilted + JT) transition in doped samples is marked by crossing of the trends for e_{tx} and e_4 and the appearance of a volume strain. (*c*) Symmetry-adapted shear strains vary linearly with each other at each composition, although they each have a different origin.

Substitution of Ca or Sr for La in La_{1-r}Sr_rMnO₃ and $La_{1-r}Ca_rMnO_3$ causes essentially the same change in lattice parameters through the *Pnma* (tilted) \leftrightarrow *Pnma* (tilted + JT) transition as is seen when Ba is substituted in $La_{1-r}Ba_rMnO_3$ (Chatterji et al., 2002, 2004, 2006). The transition changes from first order to second order in character and the magnitude of the total strains reduces with increasing dopant level in each case. Tilt angles also vary very little through the transition in Sr-doped samples (Chatterji et al., 2002). A classical Landau free-energy expansion includes truncation for the entropy after the term in q^2 and provides effective descriptions of the order-parameter evolution for phase transitions which are closer to the displacive limit than to the order/disorder limit. The tendency towards Landau second-order character for the Jahn-Teller transition is therefore consistent with displacive behaviour overall, at least in doped samples, notwithstanding the evidence for disordering of distorted MnO₆ octahedra in pure LaMnO₃. In this context, Sánchez et al. (2003) also found that the entropy change associated with the Jahn-Teller transition in LaMnO₃ is somewhat less than expected for a pure order/disorder process.

A monoclinic phase has been reported in the $La_{1-x}Ba_xMnO_3$ system by Rotiroti *et al.* (2005). Their assignments to space group I2/c and unit cell $\sqrt{2}a_{\rm p} \times \sqrt{2}a_{\rm p} \times$ $2a_{\rm p}$, $\beta \neq 90^{\circ}$, for a sample with composition La_{0.815}Ba_{0.185}MnO₃, is a different setting for structures with C2/c symmetry and lattice vectors (2,1,1,)(0,1,1)(0,1,1) listed in Table 1 of Carpenter & Howard (2009). Either of the Γ_3^+ and R_3^+ Jahn-Teller ordering schemes could be accommodated within this structure, but the refined atomic coordinates showed no overt evidence for JT distortions of the octahedra. Owing to the existence of third-order invariants, the $R3c \leftrightarrow$ C2/c transition must be first order in character. Radaelli et al. (1996) also found a first order, octahedral tilting phase transition at a nearby composition, La_{0.7}Ba_{0.3}MnO₃, but with a symmetry change $R3c \leftrightarrow Imma$ and a transition temperature of ~ 175 K.

Burgy et al. (2001) described doped transition metal oxides as being intrinsically inhomogeneous, and the heterogeneity of two phase intergrowths on nanometer or micrometer length scales appears to be integral to the development of colossal magnetoresistance properties in manganite solid solutions (Moreo et al., 1999; Uehara et al., 1999; Uehara & Cheong, 2000; Fäth et al., 1999; Dagotto et al., 2001; Renner et al., 2002; Zhang et al., 2002; Mathur & Littlewood, 2003; Salamon & Jaime, 2001; Ahn et al., 2004; Goodenough, 2004; Israel et al., 2007). Goodenough (2004) has also referred to spinodal decomposition of orthorhombic manganites into separate phases with and without JT order. A specific decomposition mechanism can occur in solid solutions due to phase transitions which are second order in character, as has been recognized in silicate minerals for example (Carpenter, 1980, 1981, 1994). Cation ordering drives precipitation in these materials and, if the transition is second order, a conditional spinodal results in characteristic coherent precipitation microstructures on an electron optical scale. By analogy, a two-phase field of JT ordered and disordered phases could occur along the extension of the second-order $Pnma \leftrightarrow Pnma$ transition in La(Ba,Ca,Sr) manganite solid solutions at low temperatures, though with different compositions.

3.3. Isosymmetric behaviour

Isosymmetric phase transitions are expected to be first order in character essentially because a term linear in the driving order parameter is allowed in the excess free energy (Christy, 1995). There are a number of examples of isosymmetric transitions which are indeed discrete and first order in character, including, for example, in ice VIII (Klug et al., 2004), α -PbF₂ (Haines *et al.*, 1998) and silicate minerals such as pyroxenes (Hugh-Jones & Angel, 1994; Ohi et al., 2008). The magnitude of the discontinuity in thermodynamic properties can be small, however, as in the case of NH_4PF_6 (Swainson et al., 2002). In principle, LaMnO₃ should not be an exception since there is a term linear in q_{2JT} among the coupling terms for the Pnma Jahn-Teller structure [see (17)]. The strain behaviour shows, however, that renormalization of the tilt/ strain coupling coefficient could be an important, if not dominant, process in driving the transition and this would allow nearly second-order character if the coupling coefficient $\lambda_{nM2+M3+R4+}$ is small/negligible. The strains shown in Figs. 7 and 8 do not have sufficient resolution to confirm that there is no discontinuity at the transition point in LaMnO₃ at high pressures or in Ba-doped samples, but the evolution away from the transition point, at least, is consistent with secondorder character.

3.4. Correlations between strain and electrical resistivity

The Jahn–Teller transition in LaMnO₃ is accompanied by a large change in electrical resistivity, ρ (Zhou & Goodenough, 1999; Mandal et al., 2001; Mandal & Ghosh, 2003). Chatterji et al. (2004, 2006) found that variations in ρ as a function of temperature and Ca/Ba doping closely mirror the patterns of volume change. The first-order transition in LaMnO₃ is associated with large and discontinuous steps in both properties. Again in parallel with data for unit-cell volume, increasing dopant levels not only cause the change in ρ to become continuous through the transition, but also substantially reduce differences between the values for tilted-only structures and tilted + JT ordered structures. Here it has been shown that the same correlation occurs for the shear strains, and it has been argued that the macroscopic strain behaviour could be strongly influenced by local strain effects. At high pressures the tilted form of LaMnO₃ without Jahn-Teller order ($P > \sim 18$ GPa) retains significant distortions from cubic lattice geometry. If local strain behaviour is a factor in suppressing the coupling of octahedral tilting with macroscopic strains, the high-pressure phase is presumably more homogenous on a length scale of up to a few unit cells than the equivalent high-temperature phase. The high-pressure phase also does not have the reduced resistivity of the hightemperature phase (Loa et al., 2001). Pseudocubic lattice geometry thus seems to be required for metallic conductivity,

suggesting that strain heterogeneity could be a determinative factor for both.

3.5. RMnO₃ systematics

As with vanadates, systematic variations in lattice geometry with ionic radius for ABX_3 perovskites at room temperature can also be examined from the perspective of macroscopic strain. Values of e_4 and e_{tx} determined using the lattice-parameter data of Alonso et al. (2000) and Tachibana et al. (2007) for RMnO₃ have been added to Fig. 4 for comparison. At up to $\sim 10\%$ these strains are larger than occur in more typical ferroelastic materials, such as Pb₃(PO₄)₂ (Salje et al., 1993; Carpenter et al., 1998). The manganites include JT ordering at room temperature (Alonso et al., 2000; Zhou & Goodenough, 2006; Tachibana et al., 2007), whereas the vanadates do not, but the overall trend is the same - increasing the ionic radius of the R cation reduces the macroscopic strain. This pattern of strain variations reflects what appears to be a universal pattern of lattice-parameter variations among RTiO₃, RCrO₃, RFeO₃, RNiO₃, RMnO₃, RCoO₃ and RGaO₃ perovskites, but the observed trends at large radii are not due simply to tilting of rigid octahedra (Zhou & Goodenough, 2005). The strain evolution with temperature shown by LaMnO₃ can be accounted for in terms of the additional effect of local strain heterogeneities causing a suppression of the macroscopic strain coupling with octahedral tilts. If the same mechanism applies in the other perovskite series, it appears that such heterogeneities arise in particular when La is the A-site cation. For example, the *Pnma* form of LaVO₃ with tilting only has lattice geometry which is very close to being cubic, but orthorhombic strains then develop in the monoclinic phase below the Jahn–Teller transition temperature of \sim 140 K (Ren et al., 2003).

4. Jahn–Teller transitions with Γ_3^+ active

Two examples of Jahn–Teller ordering with Γ_3^+ as the active representation are PrAlO₃ (Carpenter et al., 2005) and La_{0.5}Ba_{0.5}CoO₃ (Fauth et al., 2001; Nakajima et al., 2005). In PrAlO₃, the Jahn–Teller ion is on the crystallographic A site, but this does not affect the symmetry arguments. The distortions occur below room temperature in a structure which has $R\bar{3}c$ tilting (R_4^+) up to ~ 1860 K (Burbank, 1970; Kjems *et al.*, 1973; Birgeneau et al., 1974; Cohen et al., 1974; Sturge et al., 1975; Lyons et al., 1975; Harley et al., 1973; Fujii et al., 1999; Watanabe et al., 2006). Recent powder neutron diffraction studies suggest that the full transition sequence is $Pm3m \leftrightarrow$ $R\bar{3}c \leftrightarrow Imma \leftrightarrow C2/m$ (Moussa et al., 2001; Howard et al., 2000; Carpenter et al., 2005). Jahn-Teller distortions are incompatible with trigonal lattice geometry and the $R\bar{3}c \leftrightarrow$ Imma transition can be understood as occurring because there is a tetragonal strain which is common to both the tilting and electronic order-parameter components

$$e_{\rm tx} = \frac{\left(2\lambda_4 q_4^2 - \lambda_{\rm t\Gamma 3+} q_{\rm tx}\right)}{\frac{1}{2}(C_{11}^{\rm o} - C_{12}^{\rm o})} \tag{19}$$

where

$$q_{\rm tx} = \frac{1}{2} \left(q_{\rm tx} + \sqrt{3} q_{\rm oz} \right) \tag{20}$$

and the *Imma* structure has $q_4 = q_6 \neq 0$, $q_5 = 0$, $q_{oz} = \sqrt{3}q_{tz} \neq 0$. In effect, the $q_4 = q_6$ tilt system acts as an applied field such that a degree of electronic ordering is induced above the Jahn–Teller transition point.

The driving order parameter for the *Imma* \leftrightarrow *C*2/*m* transition is q_{ox} , where

$$q_{\rm ox} = \frac{1}{2} \left(\sqrt{3} q_{\rm tz} - q_{\rm oz} \right) \tag{21}$$

and this causes the monoclinic distortion through coupling with $e_{\rm ox}$ as

$$e_{\rm ox} = \frac{\left[\sqrt{3}\lambda_4 \left(q_4^2 - q_6^2\right) - \lambda_{\rm tr3+} q_{\rm ox}\right]}{\frac{1}{2} (C_{11}^{\rm o} - C_{12}^{\rm o})}.$$
 (22)

Strain analysis of high-resolution powder neutron diffraction data has shown that the *Imma* \leftrightarrow C2/*m* transition is second order in character (Carpenter *et al.*, 2005).

An important difference in the behaviour of Γ_3^+ as the active representation, as opposed to M_2^+ or R_3^+ , arises from the fact that there is bilinear coupling between the Jahn-Teller order-parameter components and the symmetry-breaking strains e_{oz} and e_{tz} [the $\lambda_{t\Gamma3+}$ ($q_{oz}e_{oz} - q_{tz}e_{tz}$) term in equation 10 of Carpenter & Howard, 2009]. This causes the Jahn-Teller transitions to be pseudo-proper ferroelastic in character and has additional implications for the possible contributions of local strain heterogeneities. In the case of a second-order transition, the transition temperature, T_{cJT}^* , is given by

$$T_{\rm c,JT}^* = T_{\rm c,JT} + \frac{\lambda_{\rm t\Gamma3+}^2}{a\frac{1}{2}\left(C_{11}^{\rm o} - C_{12}^{\rm o}\right)}.$$
 (23)

Thus, any local strain effects which influence the coupling coefficient $\lambda_{t\Gamma3+}$, comparable to the behaviour observed in $La_{1-x}Ba_xMnO_3$, should cause a renormalization of the transition temperature.

As discussed in Carpenter & Howard (2009),La_{0.5}Ba_{0.5}CoO₃ with a disordered distribution of La and Ba on the crystallographic A sites undergoes a $Pm\bar{3}m \leftrightarrow P4/mmm$ transition which has been ascribed to cooperative Jahn-Teller distortions of the CoO₆ octahedra, favoured by at least some of the Co³⁺ and Co⁴⁺ ions having intermediate spin states (Fauth et al., 2001; Nakajima et al., 2005). First-order character is expected due to the existence of third-order invariants in the free-energy expansion. According to Fauth et al. (2001) the structural transition accompanies a ferromagnetic transition at \sim 180 K, while Nakajima *et al.* (2005) placed the structural transition at ~ 140 K, ~ 30 –40 K below the magnetic transition. The structural phase transition appears to be a representative example of the Γ_3^+ system, with $q_{tz} \neq 0$, $q_{oz} = 0$, in the absence of octahedral tilting, and the tetragonal strain is expected to evolve according to equation (13) of Carpenter & Howard (2009). Lattice-parameter data obtained by neutron powder diffraction are reproduced in Fig. 9(a) from Fig. 3 of Nakajima et al. (2005). These have been used to determine e_a

and e_{tz} , using $e_1 = e_2 = (a - a_o)/a_o$ and $e_3 = (c - a_o)/a_o$ where a_o is the reference cubic lattice parameter extrapolated from high temperatures (solid line in Fig. 9*a*). Even bearing in mind the

Lattice parameter and spontaneous strain variations associated with a cooperative Jahn-Teller transition in La_{0.5}Ba_{0.5}CoO₃ and cation ordering in LaBaCo₂O₆. (a) Lattice parameters from neutron powder diffraction, reproduced from Fig. 3 of Nakajima et al. (2005). The disordered phase has P4/mmm and $Pm\bar{3}m$ symmetry below and above ~ 140 K, respectively. The ordered phase has P4/mmm symmetry. The reference parameter, a_0 , for the disordered phase is shown as a solid curve, which is a fit to the data for the cubic structure using an expression of the form a_0 = $A + B\Theta_{s} \operatorname{coth}(\Theta_{s}/T)$ (after Salje et al., 1991; Meyer et al., 2000, 2001; Sondergeld et al., 2000; Carpenter et al., 2003); the saturation temperature, Θ_s , was fixed at 150 K. The cubic reference parameter of the ordered phase was calculated as $a_0 = (a_c^2 c_c)^{1/3}$. (b) Spontaneous strains calculated from the lattice parameters shown in (a). (c) A straight line, as shown, would imply second-order character for the $Pm\bar{3}m \leftrightarrow$ *P4/mmm* transition and $T_c = 152 \text{ K} (e_{tz}^2 \propto q_z^2 \propto |T_c - T|)$, but the data are scattered and first-order character is also possible.

uncertainty in a_0 , the volume strain (e_a) accompanying the transition is essentially zero. Elongation of CoO₆ octahedra along the crystallographic z axis is responsible for the positive value of e_{tz} , but the Jahn–Teller distortion is small and the shear strain reaches a maximum value of only ~ 0.002 . Fig. 9(c) shows $e_{tz}^2 (\propto q_{tz}^2)$ as a function of temperature. A straight line has been fit to the data as if the transition is second order, with $T_c = 152$ K. In view of the scatter in the data, first-order character cannot be excluded.

Ordering of La and Ba also results in a symmetry reduction from Pm3m to P4/mmm, although in this case the unit cell of the tetragonal structure is doubled along the crystallographic zaxis (Nakajima et al., 2005; Kundu et al., 2007; Rautama et al., 2008). Lattice-parameter data of Nakajima et al. (2005), reproduced in Fig. 9(a), have been used to calculate the shear strain, e_{tz} , with the reference parameter determined as $a_0 =$ $(a_c^2 c_c)^{1/3}$. (Here a_c and c_c are the dimensions of the tetragonal phase expressed in terms of a primitive pseudo-cubic cell.) Cation ordering causes a large, negative strain (up to ~ -0.015 , Fig. 9b). It is inevitable that some coupling between cation ordering and the cooperative Jahn-Teller distortions will occur via the common strain, but, because of the opposite sign, such coupling will be unfavourable. This is reflected in the reversal of the shape change of the octahedra, *i.e.* elongation occurs within the (001) plane of the cation ordered structure (Nakajima et al., 2005).

5. Conclusion

From the strain analysis of selected, representative examples of real systems, it appears that the coupled tilting + Jahn-Teller phase transitions in perovskites conform to mean-field behaviour. This is consistent with the underlying role of strain in promoting large interaction lengths. It must be anticipated. therefore, that Landau theory will provide a quantitative description of many of the physical properties (excess heat capacity, susceptibility, elastic constants, hard and soft phonon modes etc.), which all depend explicitly on the order parameters. The analysis of LaMnO3 suggests, further, that an important aspect of the strain relaxations is the development of local strain heterogeneity due to mixing and disordering of differently distorted octahedra and to substitution of different cations on the A site of the perovskite structure. Given the link between structural parameters and electronic configuration via strain and topology, the overall approach should also provide an additional formal basis for investigating the richness of magnetic and electrical properties of many of these materials.

Support from the Leverhulme Trust, in the form of a Visiting Professorship for CJH, and from the Australian Research Council (grant No. DP0877695) is gratefully acknowledged. Tapan Chatterji is thanked for providing original lattice-parameter data for (La,Ba)MnO₃.

References

- Ahn, K. H., Lookman, T. & Bishop, A. R. (2004). *Nature*, **428**, 401–404.
- Alonso, J. A., Martínez-Lope, M. J., Casais, M. T. & Fernández-Díaz, M. T. (2000). *Inorg. Chem.* 39, 917–923.
- Atkinson, A. J., Carpenter, M. A. & Salje, E. K. H. (1999). Eur. J. Mineral. 11, 7–21.
- Birgeneau, R. J., Kjems, J. K., Shirane, G. & Van Uitert, L. G. (1974). *Phys. Rev. B*, **10**, 2512–2534.
- Bizen, D., Nakatsuka, K., Nakao, H., Murakami, Y., Miyasaka, S. & Tokura, Y. (2007). J. Magn. Magn. Mater. 310, 785–786.
- Blake, G. R., Palstra, T. T. M., Ren, Y., Nugroho, A. A. & Menovsky, A. A. (2001). *Phys. Rev. Lett.* 87, 245501.
- Blake, G. R., Palstra, T. T. M., Ren, Y., Nugroho, A. A. & Menovsky, A. A. (2002). *Phys. Rev. B*, 65, 174112.
- Boffa Ballaran, T., Carpenter, M. A., Domeneghetti, M. C., Salje, E. K. H. & Tazzoli, V. (1998). Am. Mineral. 83, 434–443.
- Bordet, P., Chaillout, C., Marezio, M., Huang, Q., Santoro, A., Cheong, S.-W., Takagi, H., Oglesby, C. S. & Batlogg, B. (1993). J. Solid State Chem. 106, 253–270.
- Bozin, E. S., Qiu, X., Schmidt, M., Paglia, G., Mitchell, J. F., Radaelli, P. G., Proffen, Th. & Billinge, S. J. L. (2006). *Physica B*, 385–386, 110–112.
- Burbank, R. D. (1970). J. Appl. Cryst. 3, 112-120.
- Burgy, J., Mayr, M., Martin-Mayor, V., Moreo, A. & Dagotto, E. (2001). *Phys. Rev. Lett.* 87, 277202.
- Carpenter, M. A. (1980). Contrib. Mineral. Petrol. 71, 289-300.
- Carpenter, M. A. (1981). Am. Mineral. 66, 553-560.
- Carpenter, M. A. (1994). Feldspars and Their Reactions, edited by I. Parsons, NATO ASI C421, pp. 221–269. Dordrecht: Kluwer Academic Press.
- Carpenter, M. A. (2002). Eur. Mineral. Union Notes Mineral. 4, 311-346.
- Carpenter, M. A. (2007a). Am. Mineral. 92, 309-327.
- Carpenter, M. A. (2007b). Am. Mineral. 92, 328-343.
- Carpenter, M. A., Becerro, A. I. & Seifert, F. (2001). Am. Mineral. 86, 348–363.
- Carpenter, M. A. & Boffa Ballaran, T. (2001). Eur. Mineral. Union Notes Mineral. 3, 155–178.
- Carpenter, M. A., Boffa Ballaran, T. & Atkinson, A. J. (1999). Phase Transitions, 69, 95–109.
- Carpenter, M. A. & Howard, C. J. (2009). Acta Cryst. B65, 134-146.
- Carpenter, M. A., Howard, C. J., Kennedy, B. J. & Knight, K. S. (2005). *Phys. Rev. B*, **72**, 024118.
- Carpenter, M. A., Howard, C. J., Knight, K. S. & Zhang, Z. (2006). J. Phys. Condens. Matter, 18, 10725–10749.
- Carpenter, M. A., Meyer, H.-W., Sondergeld, P., Marion, S. & Knight, K. S. (2003). Am. Mineral. 88, 534–546.
- Carpenter, M. A., Salje, E. K. H. & Graeme-Barber, A. (1998). Eur. J. Mineral. 10, 621–691.
- Chatterji, T., Fauth, F., Ouladdiaf, B., Mandal, P. & Ghosh, B. (2003). *Phys. Rev. B*, **68**, 052406.
- Chatterji, T., Ouladdiaf, B., Mandal, P., Banyopadhyay, B. & Ghosh, B. (2002). *Phys. Rev. B*, **66**, 054403.
- Chatterji, T., Ouladdiaf, B., Mandal, P. & Ghosh, B. (2004). Solid State Commun. 131, 75–80.
- Chatterji, T., Riley, D., Fauth, F., Mandal, P. & Ghosh, B. (2006). *Phys. Rev. B*, **73**, 094444.
- Christy, A. G. (1995). Acta Cryst. B51, 753-757.
- Cohen, E., Sturge, M. D., Birgeneau, R. J., Blount, E. I. & Van Uitert, L. G. (1974). Phys. Rev. Lett. 32, 232–235.
- Dagotto, E., Hotta, T. & Moreo, A. (2001). Phys. Rep. 344, 1-153.
- Fäth, M., Freisem, S., Menovsky, A. A., Tomioka, Y., Aarts, J. & Mydosh, J. A. (1999). Science, 285, 1540–1542.
- Fauth, F., Suard, E. & Caignaert, V. (2001). *Phys. Rev. B*, 65, 060401.
 Fujii, H., Hidaka, M. & Wanklyn, B. M. (1999). *Phase Transitions*, 70, 115–132.

- Goodenough, J. B. (2004). Rep. Prog. Phys. 67, 1915-1993.
- Goto, T., Kimura, T., Laws, G., Ramirez, A. P. & Tokura, Y. (2004). *Phys. Rev. Lett.* **92**, 257201.
- Haines, J., Léger, J. M. & Schulte, O. (1998). Phys. Rev. B, 57, 7551-7555.
- Harley, R. T., Hayes, W., Perry, A. M. & Smith, S. R. P. (1973). J. Phys. C, 6, 2382–2400.
- Hayward, S. A., Redfern, S. A. T. & Salje, E. K. H. (2002). J. Phys. Condens. Matter, 14, 10131–10144.
- Howard, C. J., Kennedy, B. J. & Chakoumakos, B. C. (2000). J. Phys. Condens. Matter, 12, 349–365.
- Howard, C. J., Zhang, Z., Carpenter, M. A. & Knight, K. S. (2007). *Phys. Rev. B*, **76**, 054108.
- Hugh-Jones, D. & Angel, R. J. (1994). Am. Mineral. 79, 405-410.
- Israel, C., Calderón, M. J. & Mathur, N. D. (2007). *Nat. Mater.* **10**, 24–32.
- Kimura, T., Goto, T., Shintani, H., Ishizaka, K., Arima, T. & Tokura, Y. (2003). *Nature*, **426**, 55–58.
- Kjems, J. K., Shirane, G., Birgeneau, R. J. & Van Uitert, L. G. (1973). *Phys. Rev. Lett.* **31**, 1300–1303.
- Klug, D. D., Tse, J. S., Liu, Z., Gonze, X. & Hemley, R. J. (2004). *Phys. Rev. B*, **70**, 144113.
- Kundu, A. K., Rautama, E.-L., Boullay, Ph., Caignaert, V., Pralong, V. & Raveau, B. (2007). *Phys. Rev. B*, **76**, 184432.
- Loa, I., Adler, P., Grzechnik, A., Syassen, K., Schwarz, U., Hanfland, M., Rozenberg, G. Kh., Gorodetsky, P. & Pasternak, M. P. (2001). *Phys. Rev. Lett.* 87, 125501.
- Lufaso, M. W. & Woodward, P. M. (2004). Acta Cryst. B60, 10-20.
- Lyons, K. B., Birgeneau, R. J., Blount, E. I. & Van Uitert, L. G. (1975). *Phys. Rev. B*, **11**, 891–900.
- Maitra, T., Thalmeier, P. & Chatterji, T. (2004). Phys. Rev. B, 69, 132417.
- Mandal, P., Bandyopadhyay, B. & Ghosh, B. (2001). Phys. Rev. B, 64, 180405.
- Mandal, P. & Ghosh, B. (2003). Phys. Rev. B, 68, 014422.
- Marquina, C., Sikora, M., Ibarra, M. R., Nugroho, A. A. & Palstra, T. T. M. (2005). J. Magn. Magn. Mater. 290–291, 428–430.
- Martínez-Lope, M. J., Alonso, J. A., Retuerto, M. & Fernández-Díaz, M. T. (2008). *Inorg. Chem.* 47, 2634–2640.
- Mathur, N. & Littlewood, P. (2003). Phys. Today, 56, 25-30.
- McKnight, R. E. A., Howard, C. J. & Carpenter, M. A. (2009). J. Phys. Condens. Matter, 21, 015901.
- Meyer, H.-W., Carpenter, M. A., Becerro, A. I. & Seifert, F. (2002). *Am. Mineral.* 87, 1291–1296.
- Meyer, H.-W., Carpenter, M. A., Graeme-Barber, A., Sondergeld, P. & Schranz, W. (2000). *Eur. J. Mineral.* **12**, 1139–1150.
- Meyer, H.-W., Marion, S., Sondergeld, P., Carpenter, M. A., Knight, K. S., Redfern, S. A. T. & Dove, M. T. (2001). Am. Mineral. 86, 566– 577.
- Miyasaka, S., Okimoto, Y., Iwama, M. & Tokura, Y. (2003). *Phys. Rev. B*, **68**, 100406.
- Mizokawa, T., Khomskii, D. I. & Sawatzky, G. A. (1999). *Phys. Rev. B*, **60**, 7309–7313.
- Moreo, A., Yunoki, S. & Dagotto, E. (1999). Science, 283, 2034–2040.
- Moussa, S. M., Kennedy, B. J., Hunter, B. A., Howard, C. J. & Vogt, T. (2001). J. Phys. Condens. Matter, 13, L203–L209.
- Muñoz, A., Alonso, J. A., Casais, M. T., Martínez-Lope, M. J., Martínez, J. L. & Fernández-Díaz, M. T. (2003a). J. Mater. Chem. 13, 1234–1240.
- Muñoz, A., Alonso, J. A., Casáis, M. T., Martínez-Lope, M. J., Martínez, J. L. & Fernández-Díaz, M. T. (2003b). Phys. Rev. B, 68, 144429.
- Muñoz, A., Alonso, J. A., Casais, M. T., Martínez-Lope, M. J., Martínez, J. L. & Fernández-Díaz, M. T. (2004a). Chem. Mater. 16, 1544–1550.
- Muñoz, A., Alonso, J. A., Casais, M. T., Martínez-Lope, M. J., Martínez, J. L. & Fernández-Díaz, M. T. (2004b). J. Magn. Magn. Mater. B, 272–276, 2163–2164.

- Nakajima, T., Ichihara, M. & Ueda, Y. (2005). J. Phys. Soc. Jpn, 74, 1572–1577.
- Norby, P., Krogh Andersen, I. G., Krogh Andersen, E. & Andersen, N. H. (1995). J. Solid State Chem. 119, 191–196.
- Ohi, S., Miyake, A, Shimobayashi, N., Yashima, M. & Kitamura, M. (2008). *Am. Mineral.* **93**, 1682–1685.
- Okazaki, A. (1969a). J. Phys. Soc. Jpn, 26, 870.
- Okazaki, A. (1969b). J. Phys. Soc. Jpn, 27, 518.
- Qiu, X., Proffen, Th., Mitchell, J. F. & Billinge, S. J. L. (2005). Phys. Rev. Lett. 94, 177203.
- Radaelli, P. G., Marezio, M., Hwang, H. Y. & Cheong, S.-W. (1996). J. Solid State Chem. 122, 444–447.
- Rautama, E.-L., Boullay, P., Kundu, A. S., Caignaert, V., Pralong, V., Karppinen, M. & Raveau, B. (2008). *Chem. Mater.* 20, 2742–2750.
- Reehuis, M., Ulrich, C., Pattison, P., Ouladdiaf, B., Rheinstädter, M. C., Ohl, M., Regnault, L. P., Miyasaka, M., Tokura, Y. & Keimer, B. (2006). *Phys. Rev. B*, **73**, 094440.
- Ren, Y., Nugroho, A. A., Menovsky, A. A., Strempfer, J., Rütt, U., Iga, F., Takabatake, T. & Kimball, C. W. (2003). *Phys. Rev. B*, 67, 014107.
- Renner, Ch., Aeppli, G., Kim, B.-G., Soh, Y.-A. & Cheong, S.-W. (2002). *Nature*, **416**, 518–521.
- Rodríguez-Carvajal, J., Hennion, M., Moussa, F., Moudden, A. H., Pinsard, L. & Revcolevschi, A. (1998). *Phys. Rev. B*, 57, R3189– R3192.
- Rotiroti, N., Tamazyan, R., van Smaalen, S. & Mukovskii, Ya. (2005). *Acta Cryst.* C**61**, i83–i85.
- Sage, M. H., Blake, G. R., Marquina, C. & Palstra, T. T. M. (2007). *Phys. Rev. B*, **76**, 195102.
- Salamon, M. B. & Jaime, M. (2001). Rev. Mod. Phys. 73, 583-628.
- Salje, E. K. H., Carpenter, M. A., Malcherek, T. & Boffa Ballaran, T. (2000). *Eur. J. Mineral.* **12**, 503–519.
- Salje, E. K. H., Graeme-Barber, A., Carpenter, M. A. & Bismayer, U. (1993). Acta Cryst. B49, 387–392.
- Salje, E. K. H., Wruck, B. & Thomas, H. (1991). Z. Phys. B Condens. Matter, 82, 399–404.
- Sánchez, M. C., Subías, G., García, J. & Blasco, J. (2003). *Phys. Rev. Lett.* **90**, 045503.
- Shannon, R. D. (1976). Acta Cryst. A32, 751-767.
- Sondergeld, P., Schranz, W., Kityk, A. V., Carpenter, M. A. & Libowitzky, E. (2000). *Phase Transitions*, **71**, 189–203.
- Sturge, M. D., Cohen, E., Van Uitert, L. G. & van Stapele, R. P. (1975). *Phys. Rev. B*, **11**, 4768–4779.
- Swainson, I. P., Hammond, R. P., Cockcroft, J. K. & Weir, R. D. (2002). Phys. Rev. B, 66, 174109.
- Tachibana, M., Shimoyama, T., Kawaji, H., Atake, T. & Takayama-Muromachi, E. (2007). Phys. Rev. B, 75, 144425.
- Tarantino, S. C., Boffa Ballaran, T., Carpenter, M. A., Domeneghetti, M. C. & Tazzoli, V. (2002). Eur. J. Mineral. 14, 537–547.
- Tsvetkov, A. A., Mena, F. P., van Loosdrecht, P. H. M., van der Marel, D., Ren, Y., Nugroho, A. A., Menovsky, A. A., Elfimov, I. S. & Sawatzky, G. A. (2004). *Phys. Rev. B*, **69**, 075110.

- Uehara, M., Mori, S., Chen, C. H. & Cheong, S.-W. (1999). *Nature*, **399**, 560–563.
- Ulrich, C., Khaliullin, G., Sirker, J., Reehuis, M., Ohl, S., Miyasaka, S., Tokura, Y. & Keimer, B. (2003). *Phys. Rev. Lett.* 91, 257202.
- Watanabe, S., Hidaka, M., Yoshizawa, H. & Wanklyn, B. M. (2006). *Phys. Status Solidus B*, **243**, 424–434.
- Zhang, L., Israel, C., Biswas, A., Greene, R. L. & de Lozanne, A. (2002). *Science*, **298**, 805–807.
- Zhou, J.-S. & Goodenough, J. B. (1999). Phys. Rev. B, 60, R15002.
- Zhou, J.-S. & Goodenough, J. B. (2005). Phys. Rev. Lett. 94, 065501.
- Zhou, J.-S. & Goodenough, J. B. (2006). Phys. Rev. Lett. 96, 247202.
- Zhou, J.-S., Goodenough, J. B., Yan, J.-Q. & Ren, Y. (2007). *Phys. Rev. Lett.* **99**, 156401.
- Zubkov, V. G., Bazuev, G. V. & Shveikin, G. P. (1980). Sov. Phys. Crystallogr. 25, 103–104.

Uehara, M. & Cheong, S.-W. (2000). Europhys. Lett. 52, 674-680.